

High Resolution Electronic Measurements in Nano-Bio Science

High-resolution measurements

Sub-ppm measurements using lock-in amplifiers

Giorgio Ferrari

Milano, June, 2023

OUTLOOK of the LESSON

- Introduction to the problem
- Noise sources limiting high-resolution measurements:
 - Additive noise sources
 - Multiplicative noise sources
- Solutions:
 - Ratiometric technique
 - ELIA: Enhanced Lock-In Amplifier
 - Differential approach Thursday

lessor

Interface electronics

$V_{out} = f(S)$ S = quantity to be measured

POLITECNICO MILANO 1863

G. Ferrari - High resolution measurements

Why resolution is important

Marco Sampietro's lesson on impedance:

Impedance at the Nanoscale

aF variations on pF baseline (see Fumagalli's lessons)

Francesco Zanetto's lesson on trasparent detection of light: CLIPP sensor:

pS variations on µS baseline

- Usually independent from S for a fixed gain
- Set the minimum detectable signal and the *best* resolution

Capacitive sensor: a case study

TIA

Example:

We choose: LIA: f=10kHz, $BW_{LIA}=1Hz$

Then: TIA: $BW_{TIA} > 100 \text{kHz} \rightarrow \text{Gain} = 10^6 \text{ V/A}$,

 $\overline{i_{eq}^2} \cong \left(140 \, fA / \sqrt{Hz}\right)^2$ (cable length < 1m)

If $C_x = 100$ fF, what is the resolution ΔC_x ?

 $2\pi f \Delta C_x \cdot V_{AC} > \sqrt{2 \overline{i_{eq}^2} B W_{LIA}} \qquad \Longrightarrow \qquad \Delta C_{x,min} \approx \frac{3aF}{V_{AC}}$

Capacitive sensor: experimental results $C_x = 100 \text{ fF}, \text{ f}=10 \text{ kHz}, \text{ G}=10^6 \text{ V/A}, \text{ BW}_{IIA}=1 \text{ Hz}$

C_x is «noise-free»

G. Ferrari - High resolution measurements

resolution limited?

High resolution measurements require:

- Low-noise, wide-bandwidth circuits
- Shift the signal to the best frequency
- Limit the BW at the minimum
- ... and a full control of the experimental setup:
- Low parasitic capacitance & good insulators (low dielectric noise)
- Noise of the stimulus signal
- Temperature effects
- Analog-to-digital and digital-to-analog conversion

M. Sampietro's

lessons

Capacitive sensor + digital LIA

Noise of the stimulus signal

Stimulus: additive noise

Eq. current noise = $\overline{e_n^2}\omega^2(C_p + C_x)^2 + \overline{e_{wg}^2}\omega^2C_x^2$

Signal generators have more noise than good amplifiers: $\overline{e_{wg}^2} \approx 25 nV / \sqrt{Hz}, \qquad \overline{e_n^2} \approx 5 nV / \sqrt{Hz}$ However, many nano/micro devices have $C_x \ll C_p$

Stimulus: additive noise

Eq. current noise = $\overline{e_n^2}\omega^2(C_p + C_x + C_{px})^2 + \overline{e_{wg}^2}\omega^2(C_x + C_{px})^2$

Signal generators have more noise than good amplifiers:

 $\overline{e_{wg}^2} \approx 25 nV / \sqrt{Hz}, \qquad \overline{e_n^2} \approx 5 nV / \sqrt{Hz}$

However, many nano/micro devices have $C_x \ll C_p$ but as usual, pay attention to stray capacitances! (in parallel to C_x)

Stimulus: additive noise

Voltage divider using small value resistors (≈ 50Ω)

A voltage divider can be beneficial $\underline{if} e_{wa}$ is independent of V_{AC}

Equivalent input noise =
$$\overline{e_n^2}\omega^2(C_p + C_x + C_{px})^2 + \frac{\overline{e_{wg}^2}\omega^2(C_x + C_{px})}{K^2}$$

- Other technique: differential measurement (see later)

Noise of the stimulus signal

Stimulus: amplitude noise modulation

POLITECNICO MILANO 1863

G. Ferrari - High resolution measurements

Effect of amplitude noise modulation

High resolution requires narrow BW \rightarrow 1/f noise of AM set a limit! Noise proportional to the signal: same resolution using V_{AC}=1V

Capacitive sensor + digital LIA

Temperature effects

The gain fluctuations are shown in the LIA output (AM)

Temperature coeff. of standard R is 50 ppm/°C (≥100ppm/°C for high value resistors)

ppm requires a temperature stability better than 0.02 °C!

Temperature effects

Time [s]

SR830 lock-in: 840nV rms

Custom lock-in: standard R (50 ppm/°C): 240nV rms (4 ppm) LTC R (5 ppm/°C): 45 nV rms (0.7 ppm)

Choose components with a low-temperature coefficient for the elements setting the gain!

- (expensive) resistors with low temp. coef. (down to 1 ppm/°C)
- COG capacitors («0 drift», less than 30 ppm/°C)
- Temperature controller
- See ELIA or differential measurements!

Gain fluctuations

Most crucial stage for the additive noise (equivalent input noise)

 $\textbf{Out} = G1 \cdot G2 \cdot G_{\text{FILTER}} \cdot \textbf{In}$

All stages are equally important for the amplitude noise!

Low temp. coef. components along the entire signal path

Digital lock-in amplifier

Additive noise Amplitude noise modulation

Additive noise Gain fluctuations

ADC: amplitude noise modulation

 $V_{R,ADC}$ $V_{B,IN}(t) = Asin(\omega_0 t) \longrightarrow ADC$

 $V_{dig}(iT_s) \propto \frac{Asin(\omega_0 iT_s)}{V_{R,ADC}}$

Unavoidable fluctuations of the amplitude measured by the LIA!

Quantization error

 $2^{\text{number of bit}}$ levels \rightarrow quantization error

Quantization error < 1 ppm → >20 bit ... but 20-bit ADCs are slow no fast high-resolution digital LIA?

We average a large number of samples!

Quantization error

Although the amplitude difference (10mV) is less than the quantization step (67mV), few samples are different

POLITECNICO MILANO 1863

Measured values: 0.502V and 0.494V

Quantization error

Things to remember

High-resolution measurements require complete control of the experimental setup:

- Noise of the input amplifier
- Noise of the sensor
- Limit the effect of 1/f noise! (use LIA if possible)
- Slow (1/f) random fluctuations of the system gain:
 - Signal source (DAC, optical source,...)
 - Temperature dependence of amplifier/filter gains (C, R,...)
 - Gain fluctuation of ADC
 - Quantization error is less critical: high resolution usually requires the average of many samples
 - A standard LIA does NOT solve the problem of gain fluctuations

Minimum detectable signal

OUTLOOK of the LESSON

- Introduction to the problem
- Noise sources limiting high-resolution
 measurements:
 - Additive noise sources
 - Multiplicative noise sources
- Solutions:
 - Ratiometric technique
 - ELIA: Enhanced Lock-In Amplifier
 - Differential approach
 Thursday
 lesson

Resolution limits of LIAs

A common limit for high-speed LIA

Model	Maximum frequency [MHz]	Signal amplitude [V]	Measurement frequency [MHz]	Relative resolution [ppm]
Custom LIA [1]	0.1	0.1, 0.3, 1	0.01, 0.05	1
SR830 (Stanford Research Systems)	0.1	0.1, 0.3, 1	0.01, 0.05	12
MCL1-540 (SynkTek)	0.5	1.4	0.1	1.3
SR865 (Stanford Research Systems)	2	0.3	0.5	45
Custom LIA [2]	10	0.03, 0.1, 0.3, 1	0.1, 1	9
HF2LI (Zurich Instruments)	50	0.03, 0.1, 0.3, 1	0.1, 1, 10	39

[1] G. Gervasoni et al., 2014 IEEE BioCAS, pp. 316–319, 2014

[2] M. Carminati et al., 2012 IEEE I2MTC, pp. 264–267, 2012.

The ultimate resolution is limited by gain fluctuations and NOT by the amplifier noise (< 1 ppm)

How to improve the resolution ?

 $STIM_{real} = STIM_{id}(1 + \delta G(t)) \qquad \implies S_{DUT,real} = S_{DUT,id} (1 + \delta G(t))$

Ratiometric approach:

 $\frac{S}{R} = \frac{S_{DUT,real}}{STIM_{real}} = \frac{S_{DUT,id} \cdot (1 + \delta G(t)) \cdot A}{STIM_{id} \cdot (1 + \delta G(t)) \cdot A}$

independent of A and $\delta G(t)$!

No fine-tuning between S and R amplitudes is required

Standard digital LIA

$$\sqrt{x^2 + y^2} = A_{DUT} = A_{STIM} |T_{DUT}| \mathbf{G}_{ADC} [1 + n_{ADC}(t)] \mathbf{G}_{DAC} [1 + n_{DAC}(t)]$$

(+ any gain fluctuations of the analog stages)

Ratiometric LIA

$$\frac{A_{DUT}}{A_{STIM}} = |T_{DUT}| \qquad \frac{G_{DAC}[1+n_{DAC}(t)]}{G_{DAC}[1+n_{DAC}(t)]} \qquad \frac{G_{ADC2}[1+n_{ADC2}(t)]}{G_{ADC1}[1+n_{ADC1}(t)]}$$

still amplitude noise!

Enhanced-LIA (ELIA)

- Digital ratiometric approach
- ≈ kHz switching frequency to mix the ADC fluctuations
- Signal reconstruction and LIA demodulation

ELIA: time domain analysis

ELIA: time domain analysis

ELIA prototype

FPGA: Xilinx Spartan 6 (Opal Kelly module)

ADC&DAC: 80MS/s

Maximum AC frequency: 10MHz

Output: 50μ V – 10V Input range: ± 100 mV - ± 10 V

Operating modes:

- Two standard LIAs
- ELIA

G. Gervasoni et al., Review Scientific Instruments, 88, 10474 (2017)

Experimental validation

Expected resolution – ideal LIA:

- Thermal noise of resistors (2.8nV/ \sqrt{Hz}) + input noise of the amplifier (2.2nV/ \sqrt{Hz})
- BW = 1Hz

$$\Delta V_{noise} \approx \sqrt{2}\sqrt{(2.8nV)^2 + (2.2nV)^2} = 5 nV$$

Relative resolution:

$$\frac{\Delta V_{noise}}{0.5V} = 0.01 \text{ppm}!$$

Experimental validation

<u>NOTE</u>: the ratiometric approach does NOT improve the SNR if the additive noise is dominant: $\frac{A_{DUT} + noise_{DUT}}{A_{STIM} + noise_{STIM}} \neq |T_{DUT}|$

High resolution spectroscopy

Summary

- Slow (1/f) random fluctuations of the system gain:
 - Signal source (DAC, optical source,...)
 - Temperature dependence of amplifier/filter gains (C, R,...)
 - Gain fluctuation of ADC
 - A standard LIA does NOT solve the problem of gain fluctuations
- Ratiometric approach
 - Custom instrument using two ADCs
 - Sub-ppm resolution up to 6MHz
 - No external components,
 - No calibration

```
- "Plug & measure"
```

- M. Carminati, et al., "Note: Differential configurations for the mitigation of slow fluctuations limiting the resolution of digital lock-in amplifiers," *Rev. Sci. Instrum.*, vol. 87, no. 2, p. 026102, Feb. 2016.
- G. Gervasoni, et al. "Switched ratiometric lock-in amplifier enabling sub-ppm measurements in a wide frequency range," *Rev. Sci. Instrum.*, vol. 88, no. 10, p. 104704, Oct. 2017.